3D Face Reconstruction from a Single Image using Parametric Model Fitting

Ana Carolina Ramos Cunha Arjun Bommadevara Bilgehan Savgu Hiirkan Ugur
03811403 03811730 03808347 03810239
Nils Collins
03811602
Abstract vertices. Pose is initialized via a Perspective-n-Point (PnP)

We present a practical pipeline for reconstructing a tex-
tured 3D face mesh from a single RGB image by fitting
a parametric face model such as FLAME or BFM. Our
method jointly estimates head pose, shape, and facial ex-
pression coefficients from detected 2D landmarks, using a
precomputed semantic-to-mesh correspondence derived di-
rectly from the model’s 3DMM parameters. The process
begins with model inspection to extract and verify landmark
indices from the shape representation. Given an input im-
age, 68 facial landmarks are detected and matched to their
3D counterparts, enabling an initial pose estimation via a
Perspective-n-Point (PnP) approach. We then perform iter-
ative optimization over pose, shape, and expression param-
eters to minimize the reprojection error, with early stopping
based on convergence criteria. Finally, the fitted geome-
try is textured either from the input image (FLAME) or by
fitting a statistical albedo model (BFM), producing a real-
istic and identity-preserving mesh ready for rendering. This
modular approach ensures robustness, interpretability, and
reproducibility in single-image 3D face reconstruction.

1. Introduction

Reconstructing a 3D face from a single RGB image is
challenging due to the inherent ambiguity of recovering
depth and shape from a 2D projection. Parametric 3D Mor-
phable Models (3DMMs) [1], such as the Basel Face Model
(BFM) [4] and FLAME [2], address this by representing
shape, expression, and albedo with a compact set of learned
parameters. Our goal is to estimate these parameters by fit-
ting the model to an image in a controlled, verifiable man-
ner.

Instead of a single monolithic optimization, we adopt a
staged pipeline. We first inspect the 3DMM to extract a
semantic-to-mesh landmark mapping, ensuring precise cor-
respondence between detected 2D facial landmarks and 3D

formulation and then refined jointly with shape and expres-
sion parameters by minimizing the reprojection error. De-
pending on the model, texture is obtained either from the in-
put image (FLAME) or by fitting a statistical albedo model
(BFM).

Our contribution is a robust, modular framework that
cleanly separates model inspection, landmark detection,
and parameter fitting, providing a reliable foundation for
full single-image 3D face reconstruction.

2. Technical Approach

Our system is designed as a sequential pipeline, illus-
trated in Fig. 1. The full pipeline aims to minimize a total
energy function combining sparse, dense, and regulariza-
tion terms:

Etotal = Esparse + Edense + Ereg (1)

In this paper, we focus on the initial pose estimation,
which is driven by the sparse landmark alignment term,
Egparse- We utilize the Basel Face Model [4] as our 3D
prior, with the potential to extend the framework to other
models like FLAME [2].

2.1. 3D Model and Parameterization

We begin by loading the BFM from its HDF5 represen-
tation. The model provides a mean face shape (S), a mean
color vector (C), and principal component analysis (PCA)
bases for shape, color, and expression. A specific facial in-
stance is synthesized from a set of weights (w) according to
the formula:

Instance = Mean + (PCABasis - w) (2)

This generative capability forms the core of our
“analysis-by-synthesis” approach. For the initial pose fit-
ting stage detailed in this paper, we simplify this by using

Mean Face Model

Landmark Detector

3D Landmarks

2D Keypoints

Landmark Mapper

Input Image

Corresponding Pairs

Pose Fitter | _Camera Pose

Project Wireframe

Visual Verification

Figure 1. The proposed pipeline for 3D face pose estimation. An input image is processed by a Landmark Detector to find 2D keypoints.
The Landmark Mapper establishes a correspondence between these 2D points and known 3D landmarks on a mean face model. The Pose
Fitter uses these corresponding pairs to solve for the camera pose (rotation, scale, translation). Finally, the solved pose is used to project

the full 3D wireframe onto the original image for visual verification.

only the mean shape (S) as a rigid 3D template, effectively
setting all shape and expression weights to zero.
Verification. The model components are validated by
exporting the mean shape, mean shape with per-vertex
color, and mean shape with the mean expression offset ap-
plied as separate ‘.obj’ files for inspection in 3D software.

2.2. 2D Landmark Detection

Given an input image I, we employ a landmark detector
module, which serves as a wrapper for a pre-trained library.
We use Dlib’s face detector and shape predictor [3] to local-
ize a set of 68 specific 2D facial landmarks, {pap} € R.
This module provides the 2D target points for our fitting
process.

Verification. The accuracy of this stage is confirmed by
generating a debug image where the 68 detected points are
drawn on the input image, allowing for immediate visual
inspection of the detector’s performance.

2.3. Semantic Landmark Correspondence

A crucial step is to establish a correspondence between
the 68 landmarks from Dlib and the semantically meaning-
ful landmarks defined on our 3D model. These 3D land-
mark locations are loaded from the metadata within the
HDF5 model file. Our LandmarkMapper module creates
this bridge by defining a static map between DIlib indices
and their corresponding semantic names in the 3D model’s
definition (e.g., Dlib index 30 maps to “center.nose.tip”).

This produces two corresponding point lists of size K:

* Alist of 3D object points, { P3p} € R?, from the mean
face.

* A list of 2D image points, {p2p} € RZ, from Dlib’s
output.

Verification. To validate the mapping, we generate a
debug image where each mapped 2D landmark is tagged
with its semantic name, providing unambiguous proof of
correct correspondence.

2.4. Two-Stage Pose Fitting

With the corresponding 2D/3D point sets, we solve for
the pose of a virtual camera. This is a classic Perspective-
n-Point (PnP) problem. We use a weak perspective camera
model:

pi=s-1I-(R-P;)+top 3)

where R is the rotation matrix, s is scale, top is a 2D
translation, and II is an orthographic projection. Our Pose-
Fitter module employs a two-stage process:

Stage 1: Rotation Estimation. We first solve for the
rotation matrix R using OpenCV’s cv2.solvePnP func-
tion. This algorithm uses our 3D object points, 2D image
points, and an estimated camera intrinsic matrix to return a
rotation vector, which is converted to the matrix R.

Stage 2: Scale and Translation Estimation. With
R known, we apply it to our 3D landmarks (P}, =
R - P3p) and orthographically project them. The prob-
lem reduces to finding the optimal scale s and trans-
lation t5p that align these projected points with the
target 2D landmarks. We solve this efficiently using
cv2.estimateAffinePartial2D.

This process yields the complete pose parameters, pro-
viding a robust initialization for the full model fitting.

2.5. Shape and Expression Fitting

We use a parametric 3DMM (FLAME or BFM), where
face shape S € R3¥ is:

S = 5 + Bshapea + Ber;m’ﬂ (4)
Coefficients:
+ S € R3*N: mean shape

* Bghape € R3NVX300: PCA basis for identity-related
shape variation

» a € R3%: identity shape coefficients

* Begpr € R3VX100: PCA basis for expression defor-
mation

3 € R190: expression coefficients

Landmarks (Dlib 68) are aligned to model vertices via
precomputed mappings. The projection follows:

pi=s-1I-(R-v;)+tap)

where II represents the (perspective) camera projection
matrix. Camera parameters are estimated using OpenCV’s
solvePnP, which includes solvers like EPNP, P3P, and DLS.

2.6. Texture Extraction

Vertex colors are obtained via bilinear sampling at the
projected vertex positions:

¢; = bilinear(7, I1(v;)) (6)

FLAME: always uses image-based sampling; no statisti-
cal texture model is used.
BFM: optionally supports a PCA texture model:

C = Cy + Beolory (N
where:
* v: texture coefficients
* C,,: mean vertex color (Cmu.npy)
¢ B oior: PCA basis for color

If disabled, BFM also falls back to image-based sam-
pling.

2.7. Energy Minimization

Optimization minimizes the following energy function:

Etotal = Elandmark + Eshape + Eewpr (8)

where the individual terms are defined as:

K

Elandmark = Z ||H(U’L) - 11”2 (9)
=1

Eshape =)‘S”aHz (10)

Eeapr = Ae||BI° (11

The shape and expression terms use Lo regularization
to keep the face close to the mean. BFM applies sepa-
rate weights (A;, A¢), while FLAME uses a single weaker
weight (\..q). These weights are scaled by PCA vari-
ances (from Ssigma.npy and Esigma.npy) to ensure realis-
tic shapes. Optimization alternates updating « and (3, with
camera parameters fixed after initialization.

2.8. Rendering and Output

The final mesh is exported as a .obj file, containing:
¢ Vertex positions S

* Vertex colors C

* Triangle faces (tri.npy or tri_flame.npy)

No lighting or shading is applied. Vertex colors directly
represent texture. The output is compatible with visualiza-
tion tools such as MeshLab. Real-time rendering is not im-
plemented.

2.9. Verification

Once pose parameters are computed, we project the full
3D mean face onto the 2D image and render the wireframe.
A close visual match between the wireframe and the sub-
ject’s facial features indicates successful pose recovery.

(b) BFM

(a) Original

(c) Flame

Figure 2. Final validation results showing the projected wireframe
of the 3D mean face onto the original input image using pose pa-
rameters estimated by our pipeline. (a) Original input image, (b)
wireframe projection using the BFM, and (c) wireframe projec-
tion using the FLAME model. The close alignment between the
wireframe and facial features across both models confirms the ac-
curacy of rigid pose estimation.

3. Results and Validation

The primary result of our work is a robustly functioning
pose estimation pipeline. The validation is qualitative and
visual, as shown in Fig. 2. After the PoseFitter computes
the camera parameters, we project the vertices of the entire
3D mean face model onto the image plane and render the
wireframe.

As demonstrated in Fig. 2, the resulting wireframe accu-
rately overlays the subject’s face. Key features such as the
jawline, nose bridge, eyes, and mouth contours show a tight
fit. This alignment is the definitive validation for this stage,
as an error in any preceding module would result in a visible
misalignment. This accurate pose serves as the crucial in-
put for the next stage: optimizing the full energy function.
This involves minimizing the reprojection error by adjust-
ing a complete state vector, including not only pose but also
shape and expression weights. The optimized wireframe

should then match the person’s unique facial structure and
expression.

4. Analysis

Our implementation choices reflect a balance between
modularity, flexibility, and low-level control. Developing
the pipeline in Python enabled direct manipulation of 3D
geometry, matrix operations, and numerical optimization
routines without relying on external solvers like Ceres. This
allowed us to explicitly control projection, regularization,
and iterative fitting behavior, making the system easier to
debug and extend.

The staged structure of the pipeline—beginning with
rigid pose estimation and followed by iterative updates to
shape and expression parameters—proved particularly ef-
fective. Each step could be visually and numerically vali-
dated, which made diagnosing failure cases straightforward.
For example, wireframe overlays and landmark reprojection
errors were used throughout the optimization loop to track
convergence.

The decision to implement custom projection logic and
Jacobian computations (rather than rely solely on OpenCV
black-box functions) gave us control over numerical stabil-
ity and allowed us to enforce validity constraints, such as
minimum depth and bounding of PCA coefficients. Regu-
larization via Lo norms further ensured that the recovered
identity and expression parameters remained within plausi-
ble ranges.

However, the system is not without limitations. Accu-
racy is strongly dependent on the quality of 2D landmark
detection. Inaccurate or occluded landmarks can lead to
poor initial alignment, which in turn degrades the optimiza-
tion. Early stopping criteria is critical for preventing over-
fitting, as continued optimization beyond convergence often
led to unrealistic facial deformations when the solver began
fitting to landmark detection noise rather than true geomet-
ric structure. Additionally, tuning the PCA bases and reg-
ularization weights remains a non-trivial task, especially in
the presence of outliers or unusual facial poses.

5. Conclusion

We have presented a clear, modular, and verifiable
pipeline for the foundational step of 3D face reconstruction:
estimating the head pose from a single 2D image. By de-
composing the problem into distinct stages and implement-
ing a visual checkpoint for each, we have built a reliable
system that robustly solves for camera rotation, scale, and
translation. The successful alignment of the projected 3D
mean face demonstrates the efficacy of our approach.

This work provides the essential and validated founda-
tion upon which more advanced reconstruction tasks can be
built. Future work will proceed with this robust pose initial-

ization to minimize the full energy function. This will be
achieved using a non-linear optimization library like Ceres
Solver to find the optimal shape and expression weights that
minimize landmark reprojection error, thereby fitting the
non-rigid aspects of the face. The final stage will involve
texture extraction, where the fitted 3D model is unwrapped
to create UV coordinates. By projecting each vertex back
into the image plane, we can sample the corresponding pixel
color, generating a complete, textured 3D model.

References

[1] Volker Blanz and Thomas Vetter. A morphable model
for the synthesis of 3d faces. In Proceedings of the 26th
annual conference on Computer graphics and interac-
tive techniques, pages 187-194, 1999. 1

[2] Tian Bolkart, Georgios Li, Dimitrios Tzionas, and
Michael J. Black. Learning a model of facial shape
and expression from 4d scans. ACM Transactions on
Graphics (TOG), 36(6):1-17, 2017. 1

[3] Davis E. King. Dlib-ml: A machine learning toolkit.
Journal of Machine Learning Research, 10:1755-1758,
2009. 2

[4] Pascal Paysan, Rainer Knothe, Brian Amberg, Sami
Romdhani, and Thomas Vetter. A 3d face model
for pose and illumination invariant face recognition.
In 2009 Sixth IEEE International Conference on Ad-
vanced Video and Signal Based Surveillance, pages
296-301, 2009. 1

[5] Justus Thies, Michael Zollhofer, Marc Stamminger,
Christian Theobalt, and Matthias Niefner. Face2face:
Real-time face capture and reenactment of rgb videos.
In Proceedings of the IEEE conference on computer vi-
sion and pattern recognition, pages 2387-2395, 2016.

	. Introduction
	. Technical Approach
	. 3D Model and Parameterization
	. 2D Landmark Detection
	. Semantic Landmark Correspondence
	. Two-Stage Pose Fitting
	. Shape and Expression Fitting
	. Texture Extraction
	. Energy Minimization
	. Rendering and Output
	. Verification

	. Results and Validation
	. Analysis
	. Conclusion

